Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(27): 10635-10644, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37358196

RESUMEN

Rare-earth manganese pyrochlores (R2Mn2O7) are frustrated magnetic materials, which previously have only been accessed using expensive high-pressure and high-temperature synthesis. In the present work, we demonstrate a convenient synthetic approach to synthesize R2Mn2O7 pyrochlores at ambient pressure. A series of pyrochlores (R = Y, Ho-Lu) were prepared by a simple and cost-effective molten salt method using NaCl and KCl as the flux. Moreover, phase-selectivity was demonstrated for yttrium manganese oxides (YMnO3 and Y2Mn2O7) by a simple variation of synthesis temperature and precursors-to-chlorides ratio. The synthetic procedure does not require high pressures or temperatures nor oxygen flow. All synthesized pyrochlores demonstrated ferromagnetic behavior at low temperature, and the magnetic properties were in good agreement with those of high-pressure-synthesized materials. The versatility of the method was confirmed by the preparation of a mixed-rare earth Y0.4Er0.4Tm0.4Yb0.4Lu0.4Mn2O7 solid solution─a compositionally complex high-entropy oxide.

2.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982877

RESUMEN

In this study, ZnO nanostructures with different types of morphologies and particle sizes were evaluated and applied for the development of an immunosensor. The first material was composed of spherical, polydisperse nanostructures with a particle size in the range of 10-160 nm. The second was made up of more compact rod-like spherical nanostructures with the diameter of these rods in the range of 50-400 nm, and approximately 98% of the particles were in the range of 20-70 nm. The last sample of ZnO was made up of rod-shaped particles with a diameter of 10-80 nm. These ZnO nanostructures were mixed with Nafion solution and drop-casted onto screen-printed carbon electrodes (SPCE), followed by a further immobilization of the prostate-specific antigen (PSA). The affinity interaction of PSA with monoclonal antibodies against PSA (anti-PSA) was evaluated using the differential pulse voltammetry technique. The limit of detection and limit of quantification of anti-PSA were determined as 1.35 nM and 4.08 nM for compact rod-shaped spherical ZnO nanostructures, and 2.36 nM and 7.15 nM for rod-shaped ZnO nanostructures, respectively.


Asunto(s)
Técnicas Biosensibles , Óxido de Zinc , Humanos , Masculino , Anticuerpos Monoclonales , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Electrodos , Oro/química , Inmunoensayo/métodos , Límite de Detección , Antígeno Prostático Específico/química , Óxido de Zinc/química , Nanopartículas del Metal
3.
Materials (Basel) ; 15(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363138

RESUMEN

In this study, an environmentally friendly sol-gel synthetic approach was used for the preparation of yttrium-doped MgFe2O4. Two series of compounds with different iron content were synthesized and A-site substitution effects were investigated. In the first series, the iron content was fixed and the charge balance was suggested to be compensated by a partial reduction of Fe3+ to Fe2+ or formation of interstitial O2- ions. For the second series of samples, the iron content was reduced in accordance with the substitution level to compensate for the excess of positive charge, which accumulates due to replacing divalent Mg2+ with trivalent Y3+ ions. Structural, morphological and magnetic properties were inspected. It was observed that single-phase compounds can only form when the substitution level reaches 20 mol% of Y3+ ions and iron content is reduced. The coercivity as well as saturation magnetization decreased with the increase in yttrium content. Mössbauer spectroscopy was used to investigate the iron content in both tetrahedral and octahedral positions.

4.
Materials (Basel) ; 14(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500933

RESUMEN

In this work, lanthanum and manganese co-substitution effects on different properties of bismuth ferrite solid solutions Bi1-xLaxFe0.85Mn0.15O3 (x from 0 to 1) prepared by a sol-gel synthetic approach have been investigated. It was observed that the structural, morphological, and magnetic properties of obtained specimens are influenced by the amount of introduced La3+ ions. Surprisingly, only the compound with a composition of BiFe0.85Mn0.15O3 was not monophasic, and the presence of neighboring phases was determined from X-ray diffraction analysis and Mössbauer measurements. Structural transitions from orthorhombic to cubic and back to orthorhombic were also observed depending on the La3+ amount. Antiferromagnetic behaviour was observed for all of the samples, with the highest magnetisation values for Bi0.5La0.5Fe0.85Mn0.15O3. Additionally, structural attributes and morphological features were evaluated by Raman spectroscopy and scanning electron microscopy (SEM), respectively.

5.
Sci Rep ; 11(1): 2875, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536490

RESUMEN

In the present work, gadolinium substitution effects on the properties of yttrium manganite YxGd1-xMn0.97Fe0.03O3 (x from 0 to 1 with a step of 0.2) synthesized by an aqueous sol-gel method have been investigated. Partial substitution of Mn3+ by 57Fe3+ in the manganite was also performed in order to investigate deeper the structural properties of synthesized compounds applying Mössbauer spectroscopy. It was demonstrated that substitution of Y3+ by Gd3+ ions leads to the changes of structural, magnetic and morphological properties of investigated system. The crystal structure gradually transformed from hexagonal to orthorhombic with an increase of Gd3+ content in the crystal lattice. The mixed phase was obtained when x = 0.6, whereas other compounds were determined to be monophasic. Magnetization measurements revealed paramagnetic behavior of all specimens, however magnetization values were found to be dependent on chemical composition of the samples. Solid solutions with orthorhombic structure revealed higher magnetization values compared to those of hexagonal samples. The highest magnetization was observed for pure GdMn0.97Fe0.03O3. Structural properties were investigated by powder X-ray diffraction, Mössbauer, FTIR and Raman spectroscopies. Morphological features of the synthesized specimens were studied by scanning electron microscopy (SEM).

6.
Materials (Basel) ; 13(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645940

RESUMEN

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...